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Abstract—The rapid advancement of social media and commu-
nication technology enables video chat to become an important
and convenient way of daily communication. However, such
convenience also makes personal video clips easily obtained and
exploited by malicious users who launch scam attacks. Existing
studies only deal with the attacks that use fabricated facial masks,
while the liveness detection that targets the playback attacks
using a virtual camera is still elusive. In this work, we develop a
novel video chat liveness detection system, LiveScreen, which can
track the weak light changes reflected off the skin of a human
face leveraging chromatic eigenspace differences. We design an
inconspicuous challenge frame with minimal intervention to the
video chat and develop a robust anomaly frame detector to verify
the liveness of the remote user in the video chat using the response
to the challenge frame. Furthermore, we propose resilient defense
strategies to defeat both naive and intelligent playback attacks
leveraging spatial and temporal verification. We implemented
a prototype over both laptop and smartphone platforms and
conducted extensive experiments in various realistic scenarios.
We show that our system can achieve robust liveness detection
with accuracy and false detection rates 97.7% (94.8%) and 1%
(1.6%) on smartphones (laptops), respectively.

I. INTRODUCTION

Due to the rapid development of social media and commu-

nication technology, recent years have witnessed video chat

gradually becoming a convenient and indispensable means

for people’s daily communication. However, such convenience

also makes personal images and videos easily obtained and

exploited by malicious users to launch impersonation scam

attacks as shown in Figure 1. For example, relatives or friends

of international students have been victims of video scam

attacks [1], [2] due to their lack of instant means to contact

the students living abroad. The attacker usually obtains video

footages of an international student from social media or a

stolen smartphone and invites the victim (i.e., student’s relative

or friend) to engage in an appealingly genuine video chat

with a muted voice using the stolen video footage. If the

victims are convinced, the attackers will claim to run into some

financial difficulties or emergencies and ask for money, which

would result in irreparable economic damage for the victims.

Similarly, there have been online romance scams [3], [4] that
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Fig. 1. A video scam attacker uses a pre-recorded video to impersonate a
user in a video chat.

reach out to the victims on their social media accounts (e.g.,

Facebook and WhatsApp) and lure the victims into performing

obscene acts in a live video chat while the victims never

actually chat with the attacker but a pre-recorded video of

someone else. All these video scams are usually premeditated,

organized crimes that steal millions, potentially billions, of

dollars from vulnerable or lonely people over the internet.

Intuitively, video scam attacks may be thwarted by request-

ing the person in chatting with to respond in accordance

with some specific challenges (e.g., blinking, reading words

or numbers aloud, head movements, etc.). However, the short

video playback used for impersonation attacks may end before

the victims are aware of its malicious intent, and the attackers

also usually ignore or reject the challenges with reasonable

excuses (e.g., broken microphone), which reassures the victims

that this is a live video conversation. Existing methods [5]–

[9], which benefit from the explosive advancement of image

processing and machine learning techniques, can detect media-

based facial forgery or impersonation attack leveraging fabri-

cated 2D/3D facial masks [10]–[13]. However, if the attacker

impersonates someone by playing a prerecorded video through

a virtual camera, existing approaches, even human eyes, are

failing to verify the liveness of people appearing in the video

chat window. Our paper aims to deal with this challenging

problem on liveness detection. Recently, Face Flashing [14]

exploits flash frames on the screen to create special reflection

light off human faces for user authentication. However, the

huge training efforts with respect to each individual is not

achievable for common video chat. Moreover, the users have

to stay static and have their face very close to screen during

the detection process, making it inapplicable for video chat

scenarios. Instead, we seek a generic and robust liveness

detection solution that can be easily integrated into mobile

devices to defend against scam attacks during the video chat.

Towards this end, we propose a low-cost video chat live-
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Fig. 2. Challenge-response process of LiveScreen leveraging the inconspic-
uous light reflected off the human face for video liveness detection.

ness detection system, LiveScreen, for various video chat

terminals (e.g., smartphones and computers) with different

chatting window sizes. Our system is low-cost and easy to

integrated into existing video chat terminals because it only

requires a screen and a camera, which are essential in the

video chat. Unlike existing solutions, LiveScreen leverages the

chromatic eigenspace difference to capture the minute changes

of the light reflected off the human face, enabling robust

video liveness detection under various practical scenarios with

complex environmental light conditions, head movements, and

non-stationary video background.

The liveness detection process of LiveScreen is shown

in Figure 2. The local user customizes some video frames

captured by the local camera with a special light pattern. The

light pattern works as a challenge that will be displayed at

the screen of the remote user and projected onto the remote

user’s face. The reflected light off remote user’s face will

be captured by the remote camera and sent back to the

local user as a response along with other normal video chat

frames. Thus, LiveScreen can detect the video liveness by

examining the change of the light pattern without requiring

active participation of the remote user, and thus verify the

liveness of the remote user.

To develop such a video liveness detection system, it

is critical to detect the response reflected off the human

face and determine whether the reflection resulting from

the challenge or not. However, the response is usually too

weak to be detected, especially under strong ambient light

interference and low skin reflectance. Inspired by the remote

photoplethysmogram (rPPG) technology [15], we propose to

extract chromatic eigenspace difference features from captured

video frames to capture the subtle light intensity changes on

the human face and achieve accurate response detection in

real video chat scenarios. In addition, the challenges should

be carefully designed to ensure high signal-to-noise ratio of

response while keeping the intervention to the video chat at a

minimum. Furthermore, to enable resilient liveness detection,

reliable verification strategy is required to defend the system

against the naive and intelligent playback attackers.

The main contribution of this work is listed as follows:

• We devise a non-invasive, low-cost and lightweight liveness

detection system, which can be easily integrated into exist-

ing video chat applications without additional devices.

• We extensively explore the light reflected off human skin

and design an inconspicuous challenge that can minimize

the interference to the users’ viewing experience in video

chat.

• Our unique chromatic eigenspace difference feature is ca-

pable of tracking the light intensity changes regardless of

various impact factors.

• We propose resilient defense strategies that leverage the spa-

tial and temporal verification on the light intensity changes

in video chat frames to defend our system against types of

attacks.

• We build a prototype video chat application integrating Live-

Screen. Extensive experiments on laptops and smartphones

demonstrate that our system can accurately detect the video

scam attacks under practical scenarios (e.g., different chat-

ting window sizes, light conditions, and body movements).

II. RELATED WORK

Many liveness detection methods have been proposed to

defend against various types of scam attacks. Some existing

liveness detection methods [16]–[21] can identify fabricated

face masks/3D head model based on representative facial

features. However, no matter how realistic the fabrication of

forged faces are, these fabrications either look unnatural in a

video chat or incur high cost on materials and manufacturing,

making them easily detected by real people. Dynamic attackers

can prepare a video beforehand and then either play the video

in front of a real webcam or stream the video through a

virtual webcam [22]. To detect such attacks, existing solutions

rely on texture analysis [23]–[26] and depth-characteristics [7],

[27], [28] to detect a forged face displayed on a screen, but

the computational cost is usually high. If the prerecorded

video is streamed via a virtual webcam by attackers, the

prior solutions will fail. Intuitive solutions [29], [30] require

explicit real-time interaction among the participants in a video

chat (i.e., blinking, reading words or numbers aloud, hands

movements, etc.). However, the attackers can ignore or reject

the challenges to verify themselves with reasonable excuses,

or carefully prepared video playbacks that include required

interactions. Some approaches [31]–[33] propose to integrate

different biometric traits collected from multiple sensors at the

attacker’s end for consistency check. For example, Biggio [31]

proposed to fuse fingerprint and face recognition techniques

to determine the liveness of the remote user; FaceLive [32]

defends against the video playback attacks by performing

consistency check between built-in inertial sensor readings

and the head-pose changes inferred from the video frames.

However, the above studies either need to access inertial

sensors or require the cooperation of the remote user. Even

worse, the attackers can fake the sensor data transmitted along

with the video playback, and fail FaceLive.

To overcome the above limitations, researchers recently

proposed to achieve liveness detection by leveraging reflection

light off human faces. Patrick et al. [34] proposed to perform

liveness detection based on the face reflectance resulting from

a flashlight, but this approach requires the assistance of a

flashlight, which may not be readily available or uncontrollable

by local user. Face Flashing [14] exploits dedicated flash

frames on the screen instead of an additional flashlight to

create special reflection light off human faces and then per-

form liveness detection leveraging deep learning techniques.

However, the success of this method is built upon huge

training efforts on the face reflection pattern with respect to

individual people to be authenticated, which is unachievable

in common video chat scenarios. Moreover, the people to be

2
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(a) Without challenge (b) With challenge

Fig. 3. Comparison of video frames showing no observable light intensity
change in the volunteer’s face when it is affected by the challenge.

authenticated have to stay static during the process of liveness

detection, making it inapplicable for video chat. Therefore, a

more generic and robust liveness detection system without the

cooperation of remote user is highly required.

III. ATTACK MODELS & FEASIBILITY STUDY

A. Attack Models

This work focuses on two types of impersonation scam

attacks in a video chat: Naive Playback Attack and Intelligent

Playback Attack. In both attacks, the attacker invites a local

user to a video chat in the name of a person who is close

to the user. During the video chat, the attacker replaces the

live video stream with a pre-recorded video clip of the person

and communicates with the user using text. Once the user is

convinced that this is a live video chat, the attacker cheats the

user for money or something else of value. We assume that

the attacker does not use voice communication as it exposes

the fraudulent nature. The attacker also ignores or rejects the

user’s challenges (e.g., making a facial expression, blinking,

or nodding) with reasonable excuses (e.g., broken microphone

or distracting the user by changing the topic of conversation).

Neither type of attack has access to the local user’s device or

software.

Naive Playback Attack (NA). The naive attacker does not

have the capability to process the video frames from the user or

modify the video frames that are sent to the user. To launch the

attack, the attacker can either (1) play the pre-recorded video

frames in front of the camera with a smartphone or laptop

(denoted as NA-1) or (2) stream the pre-recorded video frames

instead of the video frames from the real webcam through a

virtual camera [22] to emulate a live video chat (denoted as

NA-2).

Intelligent Playback Attack (IA). Compared to the naive

attacker, the intelligent attacker has full knowledge of the

proposed system. In addition, the attacker has the capability

to process the video frames from the user and modify the

video frames that are sent to the user. Therefore, the attacker

can detect the challenges embedded in the video frames and

synthesize a valid response to the challenges by modifying

the pixel intensity, for example, increasing the red-channel

intensity of the facial area in the prerecorded video.

B. Feasibility Study

Model of Reflected Light. The image sensors on a digital

camera consist of a set of pixels, which capture the reflected

light of the object to form an image. Each pixel represents

the intensity response of the sensor to the incoming reflected
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Fig. 4. RGB histogram variance of video frames showing clear changes when
the volunteer’s face is affected by the challenge.

light from a point x in a scene. For simplicity sake, the per-

pixel light intensity response can be approximated with a linear

diagonal map based on Von Kries model [35] as:

Ic(x) = Ec(x)×Rc(x), c ∈ {r, g, b}, (1)

where Ec(x) and Rc(x) are the illuminant spectral power

and reflectance of a specific color channel c. Note that the

light intensity response Ec of pixel x is a mixture of the light

intensity response resulted from multiple illuminant sources.

Considering a typical scene of a live video chat, where a

user usually has his/her face in front of a screen and camera,

the image of the user’s face captured by the camera has the

light intensity response for each pixel x as follows:

Îc(x) = Es
c (x) ×Rc(x) + Ee

c (x)×Rc(x), c ∈ {r, g, b}, (2)

where Es
c is the illuminant source from the screen and Ee

c

is the mixture of all the environmental illuminant sources

excluding the screen. Given two adjacent frames capturing

the same scene, there should be little difference in the light

intensity due to the transient time interval between them in a

video stream. Equation 2 implies that if we could adjust Es
c to

emit a special light pattern that is captured by one of the two

adjacent frames, the original light intensity distribution Îc will

be overrode. Since the skin usually reflects more light from

the screen than other objects in the scene do due to its close

distance to the screen, it is possible to detect the liveness of a

video chat by comparing the intensity distribution of the light

reflected off human faces between two adjacent frames.

To validate the feasibility of the proposed idea, we conduct

preliminary studies on the light reflected off the human face

by varying the light intensity of the video frames displayed

on the screen of a laptop. Specifically, a volunteer sits in front

of a laptop with a distance of 40cm to the screen and built-in

camera. The laptop plays a video clip on the screen containing

the frames with modified light intensity (i.e., for every 50
frames, set the light intensity of the red channel to its 150%)

to imitate a video chat with challenges. Meanwhile, the built-in

camera is recording a video of the volunteer’s face. Figure 3

shows that the response is unnoticeable, no obvious change

of light intensity on the volunteer’s face when comparing

the frames with and without challenge. We further manually

identify the skin area in the volunteer’s face in the recorded

video and calculate the variance of RGB histogram [36]

based on all the pixels in the skin area. Figure 4 clearly

shows that the RGB histogram of video frames has significant

changes when a challenge is projected onto the volunteer’s

face, and provides strong evidence on the feasibility of using

light intensity changes on human faces to perform video chat

liveness detection.

3
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Fig. 5. Overview of LiveScreen.

IV. SYSTEM DESIGN AND CHALLENGES

The goal of this work is to protect users from scam attacks

by enabling liveness detection in a video chat. Towards this

end, we develop a system that can automatically initiate

challenges and detect responses by leveraging the frames in

video chat. Specifically, we utilize the frames in video chat

as a medium to carry the challenge (i.e., challenge frame),

which is designed to create a special light intensity pattern,

while keeping the minimum intervention to the video chat.

On the remote screen, the challenge frame is projected onto

the remote user’s face, resulting in a significant change in

the intensity of the light reflected off the remote user’s face.

The remote camera captures the reflected light as the response

to the challenge and then sends it back to the user along

with the normal video frames in the video chat. Our system

can effectively identify the video frames with significant light

intensity change caused by the challenge and determine the

liveness of the video chat.

The architecture of our system is shown in Figure 5. The

system first sends the challenge to the remote chatting end,

which plays the challenge on its screen and sends the video

frames captured by its camera back to the system. Our system

continuously takes the video frames from the remote chatting

end as the input. For each frame, the system first performs

the Face Identification using Convolutional Neural Network

to locate the human face in the frame by using a pre-trained

convolutional neural network model. The human face is the

region of interest (ROI) in the video frame that concentrates

most of the response, which would facilitate the robustness of

our liveness detection. Then to further boost the detection ac-

curacy, we employ the Facial-landmark-based Skin Extraction

to exclude the non-skin parts on the identified face area and

extract the skin-related pixels. Next, the system performs the

Chromatic Eigenspace Difference Feature Extraction to derive

the chromatic eigenspace difference feature, which utilizes

eigenspace distance in the RGB color space to capture the

minute light intensity changes caused by the challenge. Last,

we conduct Video Liveness Determination Using Anomaly

Detection to identify valid response based on the time series of

the eigenspace difference features and determine the liveness
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Fig. 6. Response detection accuracy using the challenge with different levels
of light intensity.

of a video chat. Furthermore, in order to defend against the

attacks launched at the remote end, we also adopt two defense

strategies, Spatial Verification and Temporal Verification. The

Spatial Verification examines the light intensity distribution

on human face and background behind the human face in

the received frames to defeat the naive playback attacks.

The Temporal Verification monitors the round-trip delay time

(RTT) between two video chat users and detects the intelligent

attacker based on the statistics of the time intervals between

consecutive video frames.

V. CHALLENGE FRAME DESIGN

Inconspicuous Light Intensity Design. To enable incon-

spicuous challenge-response-based liveness detection, we need

to design the challenge frame to not contain noticeable artifacts

but still facilitate reliable liveness detection. In this work, we

seek to generate the challenge frame by enhancing the light

intensity of the selected video chat frames in the RGB color

space. Note that this approach is easy to implement and does

not incur extra network overhead. We find that the challenge

frame with an enhanced red channel is particularly effective for

our liveness detection because human skin generally has higher

reflectance to the red light (i.e., light with the wavelength

between 630nm-700nm) [37]. Along with this direction, we

explore the feasibility of liveness detection using the challenge

frames with different light intensities of the red channel and

our response detection method introduced in Section VI. Fig-

ure 6 presents the percentile of accurately detected responses

(i.e., accuracy introduced in Section VIII) when we increase

the intensity of the red channel of the challenge frame. We

can see that even when the light intensity is increased as low

as 10%, the detection accuracy is over 80%. Note that the

challenge frame has no obvious difference from the original

frame when the light intensity is no more than 50%. The

results indicate that our system can detect the liveness of a

video chat using inconspicuous challenges. If not mentioned

otherwise, we increase the intensity of the original frame’s red

channel by 50% to generate the challenge frames.

Robustness Design. After the light intensity of the in-

conspicuous challenge frame is determined, it is essential

to add more redundancy of the challenge frame to enhance

its robustness due to the security concern and hardware

limitations. Specifically, we have multiple challenge-frame

transmissions during video chat for reliable liveness detection,

and each transmission is allocated at a random time slot,

which aims to avoid the arrival time of the challenge frame

being predicted by an attacker. Furthermore, due to the limited

frame rate of the camera during video chat, the expected

4
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Fig. 7. Illustration of eigenspace representation of adjacent frames.

response frame may not be captured if the challenge frame

has a short retention period on the screen at the responder end.

To overcome this limitation, we extend the length of challenge

frame by covering several consecutive frames to avoid missing

the expected response frame.

Impact of Network Condition. We note that network con-

dition also has a significant impact on our liveness detection.

When a live video chat application detects that the network

condition is poor (e.g., low bandwidth or long latency), it

usually switches to high compression ratio with lossy video

compression algorithm or low frame resolution. In either case,

it will result in low-quality video frames with approximated

pixel values, which lead to significantly reduced light intensity

in the response and lower liveness detection accuracy. There-

fore, we design our system to keep monitoring the network

conditions by using python psutil tools [38]. If a poor network

condition is detected, the system will automatically suspend

the challenge-frame transmission until the network condition

becomes better.

VI. EIGENSPACE LIVENESS DETECTION

Given the received frames, our system first identifies the

human face with a pre-trained Convolutional Neural Network

(CNN) model based on Labelled Faces in the Wild (LFW)

dataset [39], and then extracts the skin area with face land-

marking method [36] based on iBUG 300-W dataset [40] to

remove the ambient light interference. Next, we introduce a

novel chromatic eigenspace difference feature and response

detection method that can capture minute light intensity

changes caused by the challenges and detect the video chat

liveness in practical environments, respectively.

A. Chromatic Eigenspace Difference Feature Extraction

After the face identification and skin extraction, we need

to determine whether the light reflected off the human face

is affected by the challenge or not. This is a nontrivial task

because the light reflected off human faces is affected by

various factors, such as ambient light, head orientations, and

skin colors. Therefore, a simple comparison on the light

intensity (e.g., using histogram) of skin-related pixels between

adjacent frames is not effective and robust enough to detect

the valid response to the challenge.

To overcome the above impacts, we propose to use a

new feature, named chromatic eigenspace difference, extracted

from the skin-related pixels between adjacent video frames.

The proposed chromatic eigenspace difference feature is well

fitted to our problem because (1) it is robust for different skin

tones and light interference; and (2) it utilizes skin-related pix-

els without any averaging operation, and each pixel contributes
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to the extracted feature. The intuition behind using this feature

for liveness detection is that the colors of skin-related pixels

gather into certain clusters in the RGB color space due to the

similarity of skin-related pixels. We can decompose the RGB

color of the skin-related pixels into three primary eigenvectors,

which represent the most significant characteristics of the light

reflected off the human face. A similar feature has been used

to extract the remote photoplethysmogram (rPPG) signals [15]

from human faces under various scenarios (e.g., head motions

and skin colors), suggesting its effectiveness in extracting

target light signals reflected off human faces regardless of

various impact factors.

Specifically, the chromatic eigenspace difference feature is

obtained through measuring the distance between the eige-

nspaces of two adjacent video frames, which is derived from

the light intensity of skin-related pixels. We first calculate the

auto-correlation of the skin-related pixels in a video frame

as C = STS/p, where p is the total number of skin-related

pixels, S is a p× 3 matrix vectorized from RGB channels of

the skin-related pixels, and T denotes the transpose operation

on matrix. Then, we obtain the eigenvectors of skin-related

pixels through the eigen decomposition of C as shown below:

C · U = Λ · U s.t. |C − Λ · I| = 0, (3)

where U and Λ denote the eigenvectors and eigenvalues,

respectively, I is an identity matrix, and |·| denotes the

matrix determinant. The eigenvectors in U are orthogonal

to each other and are used to construct the eigenspace of

the skin-related pixels. Intuitively, the frames with different

color distributions have a set of eigenvectors with different

orientations, resulting in different eigenspaces. Figure 7 shows

the eigenspaces of two video frames (i.e., Frame 2 contains

the valid response to the challenge while Frame 1 does not).

The red and green marks and lines in the figure correspond

to the skin-related pixel intensities in RGB color space and

corresponding eigenvectors U of the two frames. We can

clearly observe the differences in orientation between the two

sets of eigenvectors, suggesting that we can detect the valid

response by comparing the eigenspaces between two adjacent

frames.

We next derive the chromatic eigenspace difference fea-

ture in a time series of video frames. Given two adjacent

frames at time t and t′, the corresponding eigenspaces are

Ut =
[
u1

t , u
2

t , u
3

t

]
and Ut′ =

[
u1

t′ , u
2

t′ , u
3

t′

]
, each entry in

the eigenspace corresponding to one color channel in RGB

5
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Fig. 9. Illustration of the effectiveness of anomaly frame detection.

color space. αi,j
t = cos(θi,j) is defined as the eigenspace dis-

tance measuring the difference between two adjacent frames,

where θi,j represents the angle between ui
t′ in Ut′ and uj

t in

Ut, i = 1, 2, 3. When there is minute light intensity difference

between two adjacent frames, it will cause subtle angular

changes (e.g., δ) in the eigenspace. Because ui
t′ and ui

t are

linearly correlated to each other in eigenspace (i.e., θ ≈ 0◦),

the eigenspace distance αi,i
t only slightly varies around 1 with

small angular changes due to the gentle changes of cos(·)
function when θ is around 0◦. Since the response embedded

in the received frame is usually weak, αi,i
t is not suitable

for response detection. Then we resort to the eigenspace

distance between the orthogonal eigenvectors of two adjacent

frames, αi,j �=i
t , where θ is around 90◦. Comparing to αi,i

t ,

subtle angular changes will result in significant variations

on αi,j �=i
t due to the steep changes of cos(·) function at

90◦. Our preliminary study as shown in Figure 8 finds that

α1,2
t , comparing to α1,3

t and α2,3
t , has the most significant

difference when a valid response is contained in one of the

two adjacent frames. Thus, we choose αt = α1,2
t as the

chromatic eigenspace difference feature based on any two

adjacent frames in a time series of video frames for response

detection.

B. Response Detection

Next, we detect the response based on the time series

of extracted chromatic eigenspace differences. Specifically,

we adopt Hodrick-Prescott filter [41] to remove the cyclical

component and ambient interferences for a smoothed-curve

representation of the time series, and then use Median Abso-

lute Deviation (MAD) test to detect the response frames.

Let αt = τt + ct for t = 1, 2, · · · , N , denote the time

series of chromatic eigenspace differences consisting of a trend

component τt and a cyclical component ct, where τt can be

used to locate the abnormal changes in time series, and ct
reflects the irrelevant scene variation. The trend component is

obtained by solving the following minimization problem:

min
τ

(
N∑
t=1

(αt − τt)
2 + λ

N−1∑
t=2

(τt+1 − 2τt + τt−1)
2

)
, (4)

where the first term is the sum of the squared deviations of

αt from the trend and the second term, which is the sum

of squared second differences in the trend, is a penalty for

changes in the trend’s growth rate. The larger the value of the

positive parameter λ, the greater the penalty and the smoother

the resulting trend will be.

Given the filtered chromatic eigenspace difference mea-

surements τ , we adopt Median Absolute Deviation (MAD)

test [42] to detect response. Our empirical study finds that the
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Fig. 10. Feasibility of using the spatial verification to detect naive playback
attacks.

chromatic eigenspace difference extracted from video frames

does not follow Gaussian distribution due to the complex

environmental impacts. Thus, MAD, as a robust measure

of variability for Non-Gaussian signals, is a more suitable

detector with less impact from anomaly measurements. Ad-

ditionally, since the round-trip time starting from challenge

emission to response reception is usually very short, so the

detection process is restricted within a short time window W
after the challenge frame is sent. Figure 9 shows the detection

results on a short video footage containing the valid responses,

indicating our method accurately detect the responses based on

the time series of chromatic eigenspace differences.

VII. SPATIAL & TEMPORAL VERIFICATION

We design the spatial and temporal verification methods

based on the spatial and temporal distribution of valid response

to defend against the playback attacks.

Spatial Verification. Since users usually face to their cam-

eras during a video chat, the valid response should only appear

in the human face and no other area (e.g., the background)

in the video frame should have the similar response to the

challenge. Therefore, with the presence of naive playback

attacks, if the attacker utilizes virtual camera to transmit the

prerecorded video, no valid response should appear in the

received video frame, including the human face; if the attacker

utilizes a playback device (e.g., a tablet or smartphone) to play

the pre-recorded video in front of the camera, the entire frame

(i.e., including the human face and the background) should

contain the response because the flat screen of the playback

device has the same distance to the video chat screen and

camera. Thus, we seek to examine the spatial distribution of

light intensity in the face area and non-face area to detect the

naive playback attacks. In particular, let ZS
t and ZS

t denote the

modified Z-score measurements with respect to the face area

and non-face area in the received frames, respectively. Thus, a

successful detection of the naive playback attacks (NA-1 and

NA-2) should satisfy the following conditions:

NA-1 : ZS
t ≥ γ, ∃t ∈ (T, T +W ] ,

NA-2 : ZS
t < γ, ∀t ∈ (T, T +W ] ,

(5)

where T is the timestamp when the challenge is sent, W is the

window size for expected valid response and γ is the empirical

threshold for anomaly frame detection in Section VI-B. The

system tries to detect the response in both facial and non-

facial (i.e., background) areas in each frame. If the response

is detected in the non-facial area, the system determines there

is a naive attack.
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Fig. 11. Feasibility of using the temporal verification to detect intelligent
playback attacks.

Temporal Verification. In order to defend against the

intelligent playback attacks, we develop a temporal verification

scheme, which determines whether the response is legitimate

or not based on the time delay between consecutive frames.

Intuitively, when there is no intelligent playback attack, the

response is naturally captured by the camera at the responder

and then streamed to the challenger without any obvious

delay. Therefore, the challenger should observe stable intervals

between every two adjacent frames. When the intelligent

playback attack is launched, the attacker inevitably needs

to perform the following operations: 1) detect the challenge

frame, 2) generate the synthetic responses, and 3) encode

the synthetic responses into the video stream sent to the

challenger. Such operations introduce non-negligible extra

processing time and temporarily increase the interval between

the synthetic response frame and its following frame. Inspired

by the above analysis, we develop the temporal verification

method to detect the intelligent playback attack by examining

the variation of the time interval between frames. Specifically,

we detect the intelligent playback attacks (IA) if the following

condition is satisfied:

IA : t ≥ T +W, if ZS
t ≥ γ. (6)

Figure 11 shows the frame intervals before and after the re-

sponder starts the intelligent playback attacks. We can clearly

observe that the frame intervals have significant large peaks

after the 1200th frame when the responder begins attacking,

each peak corresponds to the occurrence of the intelligent

playback attacks. Figure 11(b) shows there are significant

differences between the CDFs of the frame intervals affected

by the intelligent playback attacks and those obtained from a

typical on-campus WiFi network (i.e., 72 hours), confirming

that we can detect the intelligent playback attacks using the

proposed temporal verification.

Note that LiveScreen continuously performs the spatial and

temporal verification on every received frame in a separated

thread. The user will be notified when the system detects a

scam attack with a very short delay (i.e., less than 200ms)

after sending a challenge frame, which is negligible compared

to the time that the attacker needs to cheat the user (ie., more

than ten seconds).

VIII. PERFORMANCE EVALUATION

A. Experimental Setup

Prototype. To evaluate the effectiveness and robustness of

our LiveScreen system, we build a prototype system on both

laptop and smartphone platforms with Python. Specifically,

a video chat application is developed to incorporate our

Fig. 12. Illustration of the real-life experimental environments.

challenge-response process between two mobile devices. The

connection between devices is established through the built-

in Python socket interface on wired or wireless local area

network. The liveness detection process is implemented by

leveraging Python image processing and machine learning

libraries (i.e., OpenCV, dlib, etc.).

Hardware. Our experiments involve two laptops and three

smartphones as the responder, which include Laptops: a

Lenovo Thinkpad E430 (14” screen, 3MP camera), a Dell

Latitude E6430 (14” screen, 1.3MP camera) and a cobra

CDR 840 5MP external camera; Smartphones: a Nexus 6

(5.96” screen, 2MP camera), a VIVO XI+ (6.2” screen and

16MP camera), and a Sony Xperia XA2 (5.2” screen, 8MP

camera). We use another laptop (i.e., Dell Latitude E6430) as

the challenger to send a challenge for every 50 frames to the

responder during a video chat. The responder is set to record

at 20FPS on laptops and 30FPS on smartphones, respectively.

Participants and Scenarios. We recruit 30 volunteers with

different ages (i.e., 20 to 40 years) and skin colors, including

21 brown, 4 white, 5 dark skin individuals. The experiments

are carried out in both static and dynamic scenarios. In the

Static Scenarios, the responder device is fixed on a desk

and volunteers are asked to sit still in front of the responder

with a default distance of 40cm and 20cm to a laptop and

a smartphone, respectively. In the Dynamic Scenarios, we

consider both head and device dynamics. For head dynamics

study, the volunteers sit in front of a fixed responder and turn

their heads ± 30◦ horizontally at moderate speed (i.e., 2s

per round) and fast speed (i.e., 1s per round) to mimic the

movements of looking around during a video chat. For device

dynamics study, the volunteers hold a smartphone and walk

around while keeping their faces at the default distance to the

smartphone. We also evaluate the system under different real-

life environments as shown in Figure 12. For all the scenarios,

we record the video from the responder for about 1min/person,

and in total over 780min of video data are collected.

B. Evaluation Metrics

We use Accuracy and False Detection Rate (FDR) to

evaluate our system performance. Accuracy is defined as the

ratio between the number of correctly detected responses and

the total number of challenge frames. FDR is defined as the

ratio between the number of incorrectly detected responses

and the total number of challenge frames.

C. Static Scenario Results

Impact of Skin Colors. Since different colored skins have

different reflectance, we study the impact of skin colors on

the performance of LiveScreen by focusing on three different
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Fig. 13. Detection performance with different skin colors.

20cm 30cm 40cm
Distances

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

ARC
Histogram
Eigenspace

20cm 30cm 40cm
0

0.02

0.04

0.06

0.08

0.1

F
D

R

ARC
Histogram
Eigenspace

(a) Accuracy (b) FDR

Fig. 14. Smartphone performance at different distances.

colors, namely brown, light, and dark. Figure 13 presents the

average accuracy and FDR for the liveness detection results

on the three skin colors using smartphones and laptops. We

find that the overall performance on brown and light skin is

better than that of the dark skin. This is because dark skin

has stronger spectral absorption in the visible light spectrum,

resulting in reduced reflection of light. Overall, the above

results indicate that LiveScreen is effective and robust for

different skin colors.

Impact of Face-to-Screen Distances. To study the impact

of the distance between the face and screen, we set the

distances as: Laptops - 30cm, 40cm and 80cm; Smartphones -

20cm, 30cm and 40cm, which are inline with the normal dis-

tances in most daily video chats. We compare the performance

of using chromatic eigenspace difference feature (denoted

as Eigenspace) in our system with two other features, the

histogram of RGB channels (denoted as Histogram) and the

average intensity of red channel (denoted as ARC). As shown

in Figure 14, on the smartphone platform, our eigenspace

feature can achieve over 98% median accuracy with lower

than 2% false detection rate at different distances, while the

median accuracy of histogram-based decreases from 96.7% to

86.25% as the distance increases. Moreover, the interquartile

ranges for our eigenspace feature are 0.035, 0.018 and 0.052

when the distance is 20cm, 30cm and 40cm, respectively,

which indicates the high stability of our system under different

distance settings. A similar observation is also found on

laptops at different distances in Figure 15, indicating that

eigenspace-based method is more robust to ambient light

interference than the other two methods.

Impact of Ambient Light. To study the impact of different

ambient light intensities, we place a LED light (Philips Energy

Light HF3418) in front of the user in a video chat and

set 3 light intensity levels (i.e., low, medium and high) to

emulate different signal-to-noise-ratios. As the light intensity

increases, we can observe a decreasing trend on the detection

accuracy for eigenspace (i.e., from 95% to 90%), histogram-

based method (i.e., from 90% to 80%) and ARC method(i.e.,

from 90% to 80%) in Figure 16. But eigenspace method
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Fig. 15. Laptop performance at different distances.
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always outperforms histogram-based method and ARC method

under different ambient light intensities. The aforementioned

observations confirm that eigenspace method is more accurate

and robust in the scenarios with lower signal-to-noise-ratio.

Impact of Video Frame Dimensions. The video frame

dimension is also a key factor affecting the liveness detection

capability of LiveScreen, as the smaller video frame dimension

that we use, the lower light intensity is introduced by the

challenge on the screen. We examine the performance with

different video frame dimensions on a laptop (i.e., 1280x720,

960x720 and 640x480). As shown in Figure 17, our liveness

detection performance improves as the video frame dimension

increases. In particular, as the video frame changes from

640x480 to 1280x720, the average accuracy increases from

88.9% to 97.5% and FDR decreases from 8.9% to 0.8%, re-

spectively. The results demonstrate that our system is capable

to capture subtle face reflections and robust to different video

frame dimensions.

Real-Life Environments Study. To validate the scalability

of LiveScreen, we carry out the experiments under six com-

mon real-life environments (i.e., library, coffee store, home,

lobby, home, outdoor) and compare the results in Figure 18.

For all the indoor environments, our system always achieves

high detection accuracy of 94.5% on both smartphone and

laptop platforms with less than 2.5% FDR. For outdoor envi-

ronments, our method still maintains over 90% detection ac-

curacy but relative high FDR of 4% and 10% on smartphones

and laptops, respectively. We notice that the higher FDR

happens when there is strong sunlight projected on the human

face, which creates strong interference on detecting valid

response. Since people usually do not have video chat under

strong sunlight, our system still achieve high effectiveness and

scalability on liveness detection in most real-life scenarios.

D. Dynamic Scenario Results

Impact of Head Movement. For dynamic status, we first

study how head movement affects the detection performance

on laptop platform. The reflection pattern on human face
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Fig. 18. Detection performance in real-life scenarios.
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Fig. 19. Performance in dynamic scenarios.

changes as head moves, thus undesired light intensity vari-

ations will be involved in the captured frames and bring

about the ambiguity on detecting the response. Note that our

system may lose track of the skin due to the incomplete facial

landmarks when user’s face turns to one side. So we also

compare the detection performance with and without facial

landmarking. As shown in Figure 19 (a), our system performs

better without facial landmarking than with landmarking (i.e.,

94% vs 89% for moderate movement and 95% vs 84% for

fast movement) and has lower FDR (i.e., 2% vs 40% for

moderate movement and 7% vs 50% for fast movement).

Such observation indicates that poor skin extraction with facial

landmarking poses a negative impact on system performance,

but our system can still gain high accuracy regardless of head

movement during video chatting by automatically switching

between using facial landmarking or not.

Impact of User Motion. It is common that people may

use their smartphones for video chat while in motion, which

will result in video frame jitter and thereby affect the detec-

tion performance. Therefore, it is also critical to study how

user motion affects the detection performance of our system.

Specifically, we conduct the experiments under four motion

status (i.e., stationary, low-speed, normal-speed and fast-speed

walking) while keeping default distance between smartphone

screen and user’s face in Figure 19(b). Specifically, when the

walking speed is relatively slow, our system maintains a high

accuracy of 97.67%, which is only a little bit worse than that

of stationary status. For normal speed, although frame jitter is

more obvious, our method stills perform well with an accuracy

of 95.83%. Even under fast-speed walking, an accuracy above

95% still holds. The encouraging results indicate that our

method is robust under various motion status.

E. Performance on Attack Detection

Finally, we evaluate the performance of LiveScreen’s de-

fense mechanism under the naive and intelligent playback

attacks. To facilitate the evaluation, we define the Attack

Detection Rate (ADR) as the ratio between the number of

accurately detected attacks and the total number of effective
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Fig. 20. Performance of attack detection.

attacks (i.e., the total number of challenges frames), and Miss

Detection Rate (MDR) as the ratio between the number of

incorrectly detected attacks and the total number of effective

attacks. We conduct the experiments with each of the three

attackers (i.e., NA-1, NA-2, and IA) performing attacks on

200 challenges sent in a video chat protected by LiveScreen.

Note that we use a smartphone to playback a victim’s pre-

recorded video in front of the camera to launch the NA-1.
As shown in Figure 20, our system can achieve high

accuracy and low miss rate on detecting NA-1, NA-2, and

IA. In particular, the ADR for detecting the three attackers

are 93%, 98%, and 94%, and the MDR for detecting the

three attackers are 5%, below 1%, and 5%, respectively. The

detection accuracy for NA-1 is a bit worse than that of NA-2.

This is because the smartphone screen that we used to perform

NA-1 may create the mirror-like reflection not pointing to the

camera, which results in weak reflected light in the entire

frame, including the face area and non-face area. However, in

such cases, our system still detects the attacks but considers

them as NA-2 attack as there is no response detected in the

face area. Overall, the results confirm the effectiveness of our

defense strategy levering spatial & temporal verifications.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of liveness detection

in a video chat with the presence of video playback attacks.

Specifically, we propose a novel video chat liveness detection

system, LiveScreen, to protect the users from impersonation

scams. The proposed system can track the inconspicuous light

changes reflected off the skin of a human face leveraging

chromatic eigenspace difference features and determine the

liveness of video chat with a robust anomaly detector. We

also propose inconspicuous challenge design with minimal

intervention to the video chat. Furthermore, a resilient defense

strategy is developed to defeat both naive and intelligent

playback attacks leveraging spatial and temporal verification.

We implement a prototype video chat application to integrate

LiveScreen on both laptop and smartphone platforms. Exten-

sive experiments involving 30 volunteers show that LiveScreen

achieves high detection accuracy with low false detection rate

in various real scenarios. In addition, a comprehensive study

of different impacts (e.g., distance, skin color, user motion,

etc.) further confirms the robustness of the proposed system.
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